Numerical stationary distribution and its convergence for nonlinear stochastic differential equations

نویسندگان

  • Wei Liu
  • Xuerong Mao
چکیده

To avoid finding the stationary distributions of stochastic differential equations by solving the nontrivial Kolmogorov-Fokker-Planck equations, the numerical stationary distributions are used as the approximations instead. This paper is devoted to approximate the stationary distribution of the underlying equation by the Backward Euler-Maruyama method. Currently existing results [21, 31, 33] are extended in this paper to cover larger range of nonlinear SDEs when the linear growth condition on the drift coefficient is violated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational method based on triangular operational matrices for solving nonlinear stochastic differential equations

In this article, a new numerical method based on triangular functions for solving  nonlinear stochastic differential equations is presented. For this, the stochastic operational matrix of triangular functions for It^{o} integral are determined. Computation of presented method is very simple and attractive. In addition, convergence analysis and numerical examples that illustrate accuracy and eff...

متن کامل

Study on efficiency of the Adomian decomposition method for stochastic differential equations

Many time-varying phenomena of various fields in science and engineering can be modeled as a stochastic differential equations, so investigation of conditions for existence of solution and obtain the analytical and numerical solutions of them are important. In this paper, the Adomian decomposition method for solution of the stochastic differential equations are improved.  Uniqueness and converg...

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

Application of new basis functions for solving nonlinear stochastic differential equations

This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...

متن کامل

Application of DJ method to Ito stochastic differential equations

‎This paper develops iterative method described by [V‎. ‎Daftardar-Gejji‎, ‎H‎. ‎Jafari‎, ‎An iterative method for solving nonlinear functional equations‎, ‎J‎. ‎Math‎. ‎Anal‎. ‎Appl‎. ‎316 (2006) 753-763] to solve Ito stochastic differential equations‎. ‎The convergence of the method for Ito stochastic differential equations is assessed‎. ‎To verify efficiency of method‎, ‎some examples are ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 276  شماره 

صفحات  -

تاریخ انتشار 2015